trained with DINO

Javier Rando, Nasib Naimi, Thomas Baumann, Max Mathys ETH Zurich

1 Introduction

Self-supervised Vision Transformers trained with DINO learn human interpretable features¹.

5 Defenses Under Limited Computational Power

Does it have enough representational power to increase robustness only through fine-tuning?

Exploring Adversarial Attacks and Defenses in Vision Transformers

Read the paper

Are they more robust to Adversarial Attacks that preserve input similarity?

2 DINO ViTs Are Not More Robust to Adv. Attacks

		FGSM			PGD			C&W	Clean	
		$\epsilon = 0.001$	$\epsilon = 0.03$	$\epsilon = 0.1$	$\epsilon = 0.001$	$\epsilon = 0.03$	$\epsilon = 0.1$	c = 50	Cicali	
DINO	ViT-S/16	52.4%	0.9%	1.1%	49.6%	0.0%	0.0%	0.2%	76.8%	
DINO	ViT-B/16	58.9%	1.8%	1.5%	56.8%	0.0%	0.0%	0.4%	77.9%	
Superv.	ViT-B/16	55.1%	17.3%	14.5%	47.7%	0.7%	0.1%	0.8%	80.2%	
ResNet-50		47.8%	8.0%	24.3%	43.9%	0.1%	0.0%	7.2%	75.7%	

Accuracy of ViT models trained using DINO and supervised (Superv.) learning against different white-box adversarial attacks. Metrics are computed on the whole ImageNet validation set. Last column represents accuracy on the original samples from which adversarial images were generated.

3 Self-Supervision Increases Attack Transferability

			Evaluated on							
			ViT-S (D)	ViT-B (D)	ViT-B (S)	ResNet-50				
Self-supervision increases	r L	ViT-S (D)	0.0%	12.5%	41.1%	51.3%				
attacks transferability	o pe	ViT-B (D)	5.2%	0.0%	31.4%	48.5%				
among ViTs and CNNs	raft	ViT-B (S)	47.1%	47.8%	0.8%	59.7%				
	S	ResNet-50	65.2%	68.4%	74.9%	0.1%				

97.3% classification accuracy on the reduced dataset

Adversarial Training² collapses for large perturbations if the ViT is frozen.

Ensemble Adv. Training³

		Clean	PGD				C&W		
Strategy	ϵ	Ciean	$\epsilon = 0.001$	$\epsilon = 0.03$	$\epsilon = 0.1$	$\epsilon = 0.001$	$\epsilon = 0.03$	$\epsilon = 0.1$	c = 50
No defense	-	97.3%	89.2%	0.0%	0.0%	90.3%	1.5%	3.1%	0.1%
Ensemble AT	0.001	97.3%	92.6%	0.3%	0.1%	93.2%	13.8%	12.3%	55.4%
Ensemble AT	0.03	93.3%	91.6%	98.7%	97.5%	91.9%	89.8%	76.1%	86.6%
Ensemble AT	0.1	95.3%	91.9%	90.1%	98.7%	91.9%	85.5%	75.4%	80.0%
Specialized Net	0.001	96.9%	92 9%	11%	1 2%	93 30%	26.6%	20.6%	71.0%

Classification accuracy of adv. samples transferred across architectures. All attacks were crafted using PGD $(\epsilon = 0.03)$. Rows represent generation setups and columns, the network used for evaluation. Computed on all validation images from ImageNet-1k. (S) and (D) indicate Supervised and DINO training respectively.

4 Latent Space Analysis

The latent space may comprise enough information to linearly separate adversarial samples without retraining the ViT.

-									
Specialized Net.	0.03	96.9%	88.6%	99.5%	99.2%	89.7%	84.3%	70.7%	5.7%
Specialized Net.	0.1	97.4%	89.2%	62.6%	99.6%	90.3%	72.1%	66.7%	0.4%

Accuracy for Ensemble Adversarial Training (AT) and Ensemble of Specialized Networks compared to a baseline classifier trained on the (reduced) ImageNet dataset.

5 Conclusion

- DINO provides **no additional robustness** against white-box ulletadversarial attacks.
- It **increases attacks transferability** among ViTs and CNNs. ullet
- Several defenses may provide robustness against black-box lacksquareattacks under limited computational power only through fine-tuning.

References

1. Caron, M., et al. *Emerging properties in self-supervised vision transformers*. 2021. 2. Madry, A., et al. Towards deep learning models resistant to adversarial attacks. 2017. 3. Tramèr, F., et al. Ensemble adversarial training: Attacks and defenses. 2017.