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1 Introduction
Artificial intelligence is permeating every field, with
over 5% of peer-reviewed research publications be-
ing on AI [1]. Not only in academics, AI or statistical
learning systems are increasingly being used across
industries such as manufacturing [2], agriculture
[3], education [4], and many others. The growing
adoption follows the increasingly automated data
collection, but in the era of big data, privacy of users
and individuals remains the key concern [5]. Data
typically involves a party generating and curating
the data, a data owner, and a party wishing to use
the data: the data user. In some cases, a data owner
may need to release data to downstreamuserswith-
outhavinganyprior knowledgeof the intendeduses
or tasks that will be performedwith the data [6]. But
doing so safely, without revealing sensitive, identi-
fying information about a user, remains a challenge.
In order to facilitate the safe dissemination of visual
data, we propose learning a lossy compression that
yields a representation that is invariant to sensitive
information, thereby anonymizing it and irrecover-
ably destroying it in the process.

2 RelatedWork
This thesis aims to build on previous work in repre-
sentation learning and compression to derive prov-
able private representations that allow for goodpre-
dictive performance downstream.
Learning Controllable Fair Representation [7]

presents an information theoretic objective for
learning expressive, yet fair representations. The
authors assume knowledge of sensitive attributes
u ∈ U and attempt to transform data points (x,u)
into a new representation z ∈ Z which is transfer-
able, i.e. useable inplace of (x,u) and fair, i.e. any
decisions made by downstream classifier over z
should be independent of the sensitive attributes
u. The optimization objective to achieve both is
formulated as

max
φ∈Φ

Iq [X ; Z |U ] s.t. Iq [Z ;U ] < ϵ (1)

Similarly, representations can be learned which
contain no mutual information with attributes that
threaten the privacy and anonymity of the data.
However, this would require clear knowledge of the
sensitive attributes, that may be easily separable in
the original representation to begin with.
In a similar vein, representation learning meth-

ods for obfuscating sensitive or private attributes

have been an active field of study [8] [9] [10] [11]
[12] [13]. Most methods rely on the idea of adver-
sarial training, where a minmax game is played be-
tween a classifiers preserving utility and separate
classifiers that attempt to retrieve private attributes
[9] [12] [8]. In [9], adversarial learning for text rep-
resentations is used, where the loss is formulated
as minmax game between a semantic meaning dis-
criminator preserving the utility of the representa-
tion and a private attribute discriminator, preserv-
ing theprivacyof the representation. In [8], they for-
mulate the objective usingmutual information:

min
p(y |x)

I (U ; X |Y ) s.t. I (S;Y ) ≤ k. (2)

That is reformulated as a unconstrained opti-
mization objective and expressed by means of ex-
pectation and parametric neural networks. This ap-
proach formulatesbounds forboth thepreservation
of theutility andobfuscationof theprivateattribute,
but relies on adversarially learned proxy for infor-
mation. Itwas shown toperformwell on thefiltering
of images while preserving the space, hence allow-
ing the reuse of existing pipelines.
The paper Lossy Compression for Lossless Predic-

tion [14] formulates a self-supervised method for
obtaining compressors which produce representa-
tions that are invariant to a set of transformations
but allow for the same predictive performance as
would be achieved with the uncompressed coun-
terpart. Following their derivation, we can find
the compressed representation containing all nec-
essary and invariant information by finding the dis-
tribution which minimizes both the mutual infor-
mation and the Bayes risk on the standard log loss,

arg min
p(Z |X )

I [X ; Z ]+βR[M(X )|Z ] (3)

Which can be formulated as more practical varia-
tional bounds in order to define the loss function.
Similarly, we can impose guarantees on anonymity
and privacy by enforcing that downstream tasks
should be invariant to any sensitive information or
attributes. This can then be learned through aug-
mentations, where through another process, data
is transformed to either include or not include the
sensitive information to which we should be invari-
ant.
Finally, when discussing privacy it is important

that the desired type of privacy is specified. Differ-
ential privacy (DP) proposed by Dwork et al. [15]
aims at protecting the privacy of the individual by
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preventing an attacker to determine whether an in-
dividual was part of a dataset. Differential privacy
was extended to machine learning by Abadi et al.
[16] in order to train differentially private machine
learning models. Nonetheless, machine learning
models were shown to unsafe against membership
inference attacks (MIA), which are closely related to
DP [17].
In contrast, we aim to protect the privacy of the

individuals’ sensitive or private attributes. A data
breachwould then consist of any sensitive data per-
taining to the individual being retrieved from the
compressed representation. Hence, we are con-
cerned about attribute inference attacks (AIA).
Wenote, that there aredeepconnectionsbetween

attribute inference andmembership inference [18].

3 Our Contribution
Attribute inference attacks can reveal private at-
tributes of individuals whomay not have consented
to that particular attribute being accessible.
Applying this idea to computer vision: what if

we do not want to retain information which reveals
the identity of people that are, for example, walk-
ing through a subway or working on a factory floor?
In scenarios like these, interest lies in, e.g. predict-
ing congestion based on human traffic, monitoring
production lines for defects, or learning to navigate
robots in crowds. In these scenarios, individuals are
not of interest and any identifying information on
the person is not required for good predictive per-
formance.
Furthermore, in many scenarios where data col-

lection is performed on edge and memory budgets
are limited, it is advantageous to store the data in
compressed form.
In this work, we aim to give the theory of private

representations, develop targeted attribute obfus-
cation representation learningmethods, and a gen-
eral task-specific representation learning method
that obfuscates all attributes which do not con-
tribute to the downstream task performance. The
ultimate goal is to find a powerful representation
learningmethod that is ideally both attribute obfus-
cating and differentially private.

3.1 Theoretical Contributions
As stated, we aim to derive a theory for private
representations. Through this, we hope to relate
compression to attribute obfuscation. As attribute
inference is related to membership inference and
membership inference attacks are related to differ-
ential privacy [17], we hope to find a relation be-
tween compression and differential privacy, ideally
showing that the optimal representation for each
are equivalent.

3.2 Targeted Attribute Obfuscation
In the casewhereprivate attributes tobeobfuscated
are known, we aim to develop a framework build-
ing on Lossy Compression for Lossless Prediction for

learning representations that obfuscate the desired
attribute. For images, this could be done by us-
ing separate detectionmodels to find the private at-
tribute in the sample, augment the sample via in-
painting, and then learning a compressorwith adis-
criminative loss together with the BINCE objective
[14]. Any inpainting of specific features formulates
the transformations we wish the compressor to be
invariant to.
Following this, the compressed representations

can be used downstream to train models, e.g. for
gauging congestion, monitoring assembly lines,
while ensuring that private attributes can no longer
be retrieved. Differentially private SGD can be used
to ensure that downstreammodels remain resilient
toMIAs.

3.3 General Attribute Obfuscation
When there are no specific private attributes we
wish to protect or they are not explicitly known,
we wish to find the minimal representation that
allows for good downstream performance. Pre-
trained self-supervised models were explored as
generic compressor and task-specific compressors
[14]. The CLIP model [19] presents an especially
powerful compressor, mapping images to detailed
captions. We wish to investigate whether task-
specific compressors trained on CLIP representa-
tions using BINCE, image-to-text compression can
provide general attribution obfuscation.
Investigating task-specific compressors as pri-

vacy preserving representation learners can open
up pathways for sharing datasets, that in their cur-
rent formmay contain information which does not
assure the privacy of individuals. The goal ultimate
goal of this work is to find one powerful representa-
tion learning method that is compressed and both
attribute obfuscating and differentially private.

4 Timeplan

TABLE 1 Timeline

Month 1 • Literature Review, code-base
setup, defining benchmarks

Month 2 • Mathematical formulation of
approach

Month 3 • Implementation of algorithms,
initial experiments

Month 4 • Extensive experiments and
comparison to benchmarks

Month 5 • Using insights gained, extend
approach and run
supplementary experiments

Month 6 • Writing of thesis, presentation
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